MHC class I in dopaminergic neurons suppresses relapse to reward seeking

نویسندگان

  • Gen Murakami
  • Mitsuhiro Edamura
  • Tomonori Furukawa
  • Hideya Kawasaki
  • Isao Kosugi
  • Atsuo Fukuda
  • Toshihide Iwashita
  • Daiichiro Nakahara
چکیده

Major histocompatibility complex class I (MHCI) is an important immune protein that is expressed in various brain regions, with its deficiency leading to extensive synaptic transmission that results in learning and memory deficits. Although MHCI is highly expressed in dopaminergic neurons, its role in these neurons has not been examined. We show that MHCI expressed in dopaminergic neurons plays a key role in suppressing reward-seeking behavior. In wild-type mice, cocaine self-administration caused persistent reduction of MHCI specifically in dopaminergic neurons, which was accompanied by enhanced glutamatergic synaptic transmission and relapse to cocaine seeking. Functional MHCI knockout promoted this addictive phenotype for cocaine and a natural reward, namely, sucrose. In contrast, wild-type mice overexpressing a major MHCI gene (H2D) in dopaminergic neurons showed suppressed cocaine seeking. These results show that persistent cocaine-induced reduction of MHCI in dopaminergic neurons is necessary for relapse to cocaine seeking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior.

Phasic activation of dopaminergic neurons is associated with reward-predicting cues and supports learning during behavioral adaptation. While noncontingent activation of dopaminergic neurons in the ventral tegmental are (VTA) is sufficient for passive behavioral conditioning, it remains unknown whether the phasic dopaminergic signal is truly reinforcing. In this study, we first targeted the exp...

متن کامل

Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation

Motivated reward-seeking behaviours are governed by dopaminergic ventral tegmental area projections to the nucleus accumbens. In addition to dopamine, these mesoaccumbal terminals co-release other neurotransmitters including glutamate and GABA, whose roles in regulating motivated behaviours are currently being investigated. Here we demonstrate that loss of the E3-ubiquitin ligase, UBE3A, from t...

متن کامل

The dopamine hypothesis of reward: past and current status.

Mesolimbic dopaminergic neurons are thought to serve as a final common neural pathway for mediating reinforcement processes. However, several recent findings have challenged the view that mesolimbic dopamine has a crucial role in the maintenance of reinforcement processes, or the subjective rewarding actions of natural rewards and drugs of abuse. Instead, there is growing evidence that dopamine...

متن کامل

Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior.

Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magneti...

متن کامل

Amphetamine induces dendritic growth in ventral tegmental area dopaminergic neurons in vivo via basic fibroblast growth factor.

Dopaminergic neurons of the ventral tegmental area are implicated in the physiology of reward, and long-lasting changes in their function induced by exposure to psychostimulant drugs are related to the pathophysiology of drug abuse. It is not known, however, whether such changes are accompanied by morphological changes in these neurons. We characterized and labeled cells in slices containing th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2018